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Abstract

The steady state oscillations of a system incorporating a non-linear hysteretic damper are studied
analytically by applying a perturbation technique. The hysteretic damper of the system subject to harmonic
resonant force is modelled by combining a Maxwell’s model and Kelvin–Voigt’s model in series. The non-
linearity is imposed by replacing a spring element by a cubic-non-linear spring. The response of the system
is described by two coupled second order differential equations including a non-linear constitutive
equation. Proper rescaling of the variables and parameters of the equations of motion leads to a set of
weakly non-linear equations of motion to which the method of averaging is applied. The bifurcation
analysis of the reduced four-dimensional amplitude- and phase-equations of motion shows typical non-
linear behaviors including saddle-node and Hopf bifurcations and separate solution branch. By the stability
analysis, the saddle-node and Hopf bifurcation sets are obtained in parameter spaces. The software package
AUTO is used to numerically study the bifurcation sets and limit cycle solutions bifurcating from the Hopf
bifurcation points. It is shown that the limit cycle responses of the averaged system exist over broad
parameter ranges.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Hysteretic behavior which can be found in various elastomeric materials and civil structures has
a hereditary and memory-dependent nature, which is quite often non-linear. A class of the models
to describe the hysteretic cycles adopts a piecewise linear or non-linear algebraic function for
force–displacement relationship. The bilinear and Ramberg–Osgood models are among them and
they show the hysteretic cycles not only for the dynamic case but also for the static case. The other
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class of the models, so called, the differential models, accompanies constitutive differential
equations and the Bouc–Wen model is one of them. Most of the models in the two classes can
describe inherent non-linearities as well as the history dependency. A simpler way to produce a
differential model is to combine spring and dashpot elements in various ways [1]. The Maxwell’s
and Kelvin–Voigt’s models are the simplest among them, and the inherent non-linear property,
e.g., hardening or softening stiffness, can be modelled by replacing an element by appropriate
non-linear one.
When the dynamical system incorporating one of the models mentioned above is subject to

harmonic forcing, the response can be obtained by solving the equations of motion and,
simultaneously, the constitutive equations. Its time and frequency responses have been usually
obtained by applying direct-time integration and harmonic balance methods [2], respectively, to
the set of equations. The harmonic balance method has been used as a practical tool to obtain the
frequency response and its stability has been determined by applying Floquet theory or Poincar!e
mapping [3]. Several studies [4–6] have shown that the hysteretic dynamical system can show
typical non-linear behaviors which include jump, sub- and super-harmonic responses, and Hopf
bifurcation [3]. The multi-valued responses and unbounded resonances have been shown to exist
inherently.
Cappechi and Vestroni [4] applied the harmonic balance method to study a class of simple

oscillator which has multi-linear hysteretic force–displacement relationship and it was shown that
the jump phenomena can occur in the hysteretic systems. The stability analysis was performed by
using the two-dimensional autonomous differential system which resulted from the harmonic
balance procedure and the eigenvalues of the Jacobian matrix of the system determines the
stability. The set for the vertical tangencies, i.e., the saddle-node bifurcation set and the Hopf
bifurcation set of the frequency response were obtained in the parameter plane of the amplitude
and frequency of excitation. In Ref. [5], the periodic responses of a differential hysteretic system
were determined through the harmonic balance method with many higher order harmonic
components. The stability of the periodic responses was studied by using the Poincar!e mapping
and it was found that in a class of oscillators saddle-node and Hopf bifurcations can occur, but no
bifurcation set was given due to the limitation of the numerical method. It was shown that the
super-harmonic resonances are evident in some cases. In Ref. [6], numerical multi-harmonic
balance method, so called, Galerkin/Levenberg–Marquardt method was applied to Bouc–Wen
differential hysteretic system, whose harmonic, sub- and super-harmonic responses were
computed. It was shown that the responses can be multi-valued both in softening and hardening
cases, but the stability analysis was not given. The multi-harmonic balance method combined with
a path-following technique was applied to a hysteretic two-degree-of-freedom system which is in
one-to-three internal resonance [11–13]. It was found that in general the frequency response
curves of coupled modes exhibit various non-linear phenomena such as saddle-node bifurcation,
period doubling, and sub- and super-harmonic responses. In Ref. [14], non-linear dynamic
response of a self-excited non-smooth hysteretic system subject to direct excitation was studied by
the method of averaging. Saddle-node and Hopf bifurcations were shown to occur and their
stability boundaries were presented in the bifurcation diagrams.
The aim of this paper is to explore more rigorously the matters related with the non-linear

hysteretic behaviors by applying a perturbation technique to obtain the frequency response curve
and its stability and bifurcation analysis, which the previous works could not perform completely
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due to the complexities of the model and the limitations of the numerical methods. For the
purpose, a simple differential hysteretic oscillator which has non-linear, but continuous and
smooth load–unload path is considered with direct harmonic excitation. The dynamical system
incorporates a non-linear version of Burgers’ model [1] which comprises of the Maxwell’s and
Kelvin–Voigt’s in series. The response is described by the displacement equation of motion and
the accompanying constitutive force equation. Applying the method of averaging [3] to the
coupled second order differential equations leads to the reduced four-dimensional amplitude
and phase equations of motion. The frequency response curve of the primary resonance is
obtained analytically and its bifurcation is studied. The stability is determined by
analyzing the singular points of the autonomous four-dimensional system and the saddle-
node and Hopf bifurcation sets are obtained analytically. The limit cycle solutions
bifurcating from the Hopf bifurcation points are obtained numerically by the software package
AUTO [7].

2. Formulation of the problem

In this section, a set of the equations of motion of a simple mechanical system incorporating
Burgers’ model as a damper is derived. More detailed derivation and general result can be found
in Ref. [8]. The derived equations of motion are non-dimensionalized and through proper
rescalings the non-dimensional equations of motion are expressed in appropriate form for the
perturbation analysis of a primary resonant response. Fig. 1 shows Burgers’ four element model,
which has a non-linear spring, S1; as an element. Other elements, K2; C2 and C3 are assumed to be
linear. The Burgers’ model has been selected to get more flexibility in modelling a hysteretic
behavior and to get two-dimensional constitutive equation which is more appropriate in applying
the method averaging in the perturbation analysis.
When the model is subject to a force #D; the non-linear spring, S1; the Kelvin chain comprising

of K2 and C2; and the dashpot, C3; undergo deformations, #x1; #x2; and #x3; respectively. The non-
linearities of the spring, S1; is assumed to be cubic as follows:

#x1 ¼ f ð #DÞ ¼ d1 #D þ d3 #D
3; ð1Þ

where, in order to obtain a constitutive equation easily, the deformation #x1 is described as a non-
linear function of the force #D instead of the force as a function of a deformation. The system
parameters d1; d3; K2; C2 and C3 can be determined through an optimization procedure for a
specific damper [8]. The behaviors of the Kelvin chain and dashpot C3 are described by the
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Fig. 1. Four-parameter non-linear hysteretic damper model with a non-linear spring S1:
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following equations, respectively:

K2 #x2 þ C2 ’#x2 ¼ #D ð2Þ

and

C3 ’#x3 ¼ #D; ð3Þ

where the dot ð�Þ represents differentiation with respect to time, t: From Eqs. (1)–(3), the
constitutive differential equation can be obtained as follows:

C3K2 ’#x þ C2C3 .#x

¼ C3K2
’#D
df ð #DÞ

d #D
þ C2C3

df ð #DÞ

d #D

.#D þ
d2f ð #DÞ

d #D2
’#D2

� �
þ K2 #D þ ðC2 þ C3Þ

’#D; ð4Þ

where #x ¼ #x1 þ #x2 þ #x3; which is the total deformation of the damper. The dynamic force–
displacement hysteresis curves can be obtained from Eq. (4) by applying harmonic displacement,
#x ¼ #x0 cosðotÞ: Similar hysteresis curves can be obtained from Eq. (4) by applying harmonic
forces. The hysteresis curves of a linear viscoelastic damper are ellipses, but due to the non-
linearity in Eq. (1) the shapes of the hysteresis curves change with both dynamic amplitude and
static preload. Fig. 2 shows the representative hysteresis curves of different amplitudes at zero
static preload. In Fig. 2, it is shown that excessive dynamic amplitudes induce non-linear softening
behaviors in the force–displacement curves.
Fig. 3 shows a schematic diagram of a spring–mass–damper system, which incorporates the

non-linear hysteretic damper discussed above. The equation of motion is obtained as follows:

M .#x þ K #x þ #D ¼ PðtÞ; ð5Þ
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Fig. 2. Hysteresis cycles of the damper in Fig. 1; K2 ¼ C2 ¼ C3 ¼ 1:0; d1 ¼ d3 ¼ 1:0 in Eq. (1), o ¼ 5:0 and #x0 ¼ 2:0
(innermost), 5.0 and 10.0.
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where M ; K and PðtÞ are the mass, the system stiffness constant and the external excitation,
respectively. The dynamics of the system is determined by the two coupled second order
differential equations (4) and (5). When the system is subject to a harmonic excitation force, i.e.,
PðtÞ ¼ P0 cosðotÞ; the non-dimensional versions of Eqs. (4) and (5) are, respectively, as follows:

ð1þ %a2 %D
2Þ %D00 þ O2D %D þ %a1 %D

0 þ 2 %a2 %D %D02 þ
%a2 %b2
%b1

%D0 %D2 ¼ %b1 %x
00 þ %b2 %x

0 ð6Þ

and

%x
00 þ O20 %x þ %C %D ¼ %F0 cos t; ð7Þ

where

%x ¼
#x

xY

; %D ¼
#D

DY

; OD ¼
1

o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

C2C3d1

r
;

%a1 ¼
C2 þ C3 þ C3K2d1

oC2C3d1
; %a2 ¼

3d3D
2
Y

d1
; %b1 ¼

xY

d1DY

; %b2 ¼
K2xY

oC2d1DY

;

O0 ¼
o0
o
; o0 ¼

ffiffiffiffiffiffi
K

M

r
; %C ¼

DY

o2MxY

; %F0 ¼
P0

o2MxY

; t ¼ ot ð8Þ

and xY and DY represent the displacement and damper force at yielding, respectively. The primes
ð0Þ in Eqs. (6) and (7) represent the differentiations with respect to t: It is assumed that primary
resonant responses in the displacement %x and damper force %D are induced by the excitation force
and that their periods are close to that of the excitation force. Such proximities of the periods can
be formulated via

O20 ¼ 1� es and O2D ¼ O20 � eg; ð9Þ

where s and g are frequency detuning parameters between %x and the excitation force, and between

%x and %D; respectively. Rescaling the variables and parameters in Eqs. (6) and (7) with the small
parameter, e; as follows:

%x ¼ e1=2x; %D ¼ e1=2D; %F0 ¼ e3=2F0; %C ¼ eC;

%a1 ¼ ea1; %a2 ¼ a2; %b1 ¼ eb1; %b2 ¼ eb2; ð10Þ

imposing the resonance conditions in Eq. (9) and performing some algebra to uncouple the
equations in inertia terms lead to

D00 þ D þ e �ðsþ gÞD � a2D
3 þ a1D

0 þ 2a2DD02 þ
a2b2

b1
D0D2 þ b1x � b2x

0
� �

þ Oðe2Þ ¼ 0 ð11Þ
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Fig. 3. Dynamic oscillator with the non-linear hysteretic damper.
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and

x00 þ x þ e½�sx þ CD � F0 cos t	 þ Oðe2Þ ¼ 0: ð12Þ

The set of the coupled equations (11) and (12) constitutes a weakly non-linear system and the
method of averaging is readily applicable to its standard form via van der Pol transformation.

3. Analysis and results

Applying the method of averaging to Eqs. (11) and (12) leads to the autonomous amplitude
equations of motion, valid on a time scale tB1=e; as follows:

’X1 ¼ � 1
2
sY1 þ 1

2
CY2;

’Y1 ¼ 1
2
sX1 � 1

2
CX2 þ 1

2
F0;

’X2 ¼ 1
2
b2X1 þ 1

2
b1Y1 � 1

2
a1X2 � 1

2
ðsþ gÞY2

� 1
8

a2b2

b1
X 3
2 �

1
8
a2Y

3
2 �

1
8

a2b2

b1
X2Y

2
2 �

1
8
a2X

2
2Y2;

’Y2 ¼ � 1
2
b1X1 þ 1

2
b2Y1 þ 1

2
ðsþ gÞX2 � 1

2
a1Y2

þ 1
8
a2X

3
2 �

1
8

a2b2

b1
Y 3
2 þ

1
8
a2X2Y

2
2 �

1
8

a2b2

b1
X 2
2Y2; ð13Þ

where X1 and Y1; and X2 and Y2 determine the amplitudes and phases of the responses x and D;
respectively, as follows:

x ¼ X1 cos tþ Y1 sin t and D ¼ X2 cos tþ Y2 sin t ð14Þ

and the dots ð�Þ in Eq. (13) represent the differentiations with respect to slow time et: Via following
transformation:

X1 ¼ Rx cosðfxÞ; Y1 ¼ Rx sinðfxÞ;

X2 ¼ RD cosðfDÞ; Y2 ¼ RD sinðfDÞ; ð15Þ

Eq. (13) are written as follows:

’Rx ¼ 1
2
CRD sinðfD � fxÞ þ

1
2
F0 sinðfxÞ;

’fx ¼ � 1
2

C
RD

Rx

cosðfD � fxÞ þ
1
2
sþ 1

2
F0
1

Rx

cosðfxÞ;

’RD ¼ � 1
2

a1RD � 1
2

b1Rx sinðfD � fxÞ þ
1
2

b2Rx cosðfD � fxÞ �
1
8

a2b2

b1
R3D;

’fD ¼ 1
2
ðsþ gÞ � 1

2
b1

Rx

RD

cosðfD � fxÞ �
1
2

b2
Rx

RD

sinðfD � fxÞ þ
1
8

a2R
2
D: ð16Þ

From Eqs. (16), through some algebra, it can be shown that the steady state constant solution, RD

can be obtained by solving the following equation:

a22ðb
2
1 þ b22Þs

2R6D þ 8sa2b1½ðb1dþ a1b2Þs� Cðb21 þ b22Þ	R
4
D

þ 16b21½ðd
2 þ a21Þs

2 � 2Cðb1dþ a1b2Þsþ C2ðb21 þ b22Þ	R
2
D � 16F20b21ðb

2
1 þ b22Þ ¼ 0; ð17Þ
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where d 
 sþ g and the steady state constant solution, Rx; is described by

R2x ¼
R2D

16b21ðb
2
1 þ b22Þ

½a22ðb
2
1 þ b22ÞR

4
D þ 8b1a2ðb1dþ a1b2ÞR2D þ 16b21ðd

2 þ a21Þ	: ð18Þ

The representative bifurcation diagrams of the response RD with respect to the detuning
parameter s with a stability boundary [9] are shown in Fig. 4. The responses inside the stability
boundary curve, named as SB in Fig. 4, are unstable. Fig. 4 shows that a separate solution branch
can coexist with the primary solution branch for the cases F0 ¼ 1:74 and 1.80, and that, through
merging of the two solution branches, the connected solution branches are formed for the case
F0 ¼ 1:88: Even when the primary solution branch shows no apparent non-linear behavior ðF0 ¼
1:74Þ; such as jump phenomena, the separate solution branch exists. The stability boundary of
saddle-node bifurcation in Fig. 4 can be obtained by imposing the geometric vertical tangency
condition @s=@RD ¼ 0 to Eq. (17). The representative saddle-node bifurcation set which can be
obtained by combining the vertical tangency condition and the solution of Eq. (17) is shown in
Fig. 5. The saddle-node bifurcation set can explain the existence of the separate solution branch
for the case F0 ¼ 1:74; the occurrences of the three saddle-node bifurcations for the case F0 ¼ 1:80
and the connected solution branches for the case F0 ¼ 1:88 in Fig. 4. For either of the cases
F0 ¼ 1:74 and 1.88, there exists only one saddle-node bifurcation, but for the former case, the
saddle-node bifurcation occurs in the separate solution branch and for the latter, it occurs in the
connected lower solution branch. The non-linear phenomena including the jumps and merging of
the primary and separate branches have been shown to exist in the dynamical systems
incorporating other types of the non-linear model [4–6]. The saddle-node bifurcation set in Fig. 5
is comparable to the curves C1 and C2 in Fig. 10 in Ref. [4] in which a multi-linear model is
considered.
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Fig. 4. Bifurcation diagrams (response RD vs. frequency detuning parameter s) with the stability boundary curve (SB;
thin solid line) of saddle-node bifurcation; a1 ¼ 3:0; a2 ¼ b1 ¼ b2 ¼ 1:0; C ¼ 2:0; g ¼ 0:0; F0 ¼ 1:74 (dotted line), 1.80
(dashed line) and 1.88 (solid line).
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The stability analysis is performed by referring to the Jacobian of Eq. (13) and by denoting the
eigenvalue by l; the characteristic equation is as follows:

J4l
4 þ J3l

3 þ J2l
2 þ J1lþ J0 ¼ 0; ð19Þ

where the coefficients J0; J1; J2; J3 and J4 are the functions of the system parameters and their
lengthy expressions are not presented here. For stable solutions, Routh–Hurwitz criteria require
that [10]

J0 > 0; J1 > 0; J2 > 0; J3 > 0; J4 > 0 ð20Þ

and, in addition,

J1ðJ2J3 � J1J4Þ � J0J
2
3 > 0: ð21Þ

By numerically studying and plotting the conditions in Eq. (20), it has been found that the first
condition in Eq. (20) agrees with the saddle-node bifurcation set in Fig. 5.
Another possibility losing stability is due to Hopf bifurcation [3], through which limit cycle

solution bifurcates from the steady state constant solution. In Fig. 6 is shown the bifurcation
diagram of the response RD with respect to the another detuning parameter g and the stability
boundaries obtained from the first condition in Eq. (20) for the saddle-node bifurcation and from
Eq. (21) for Hopf bifurcation. The thick solid and dashed lines represent the stable and unstable
steady state constant solutions, respectively, and the squares represent the Hopf bifurcation
points. The corresponding saddle-node bifurcation set in s–g plane is presented in Fig. 7. The
Hopf bifurcations have been shown to exist in the dynamical systems incorporating other types of
the non-linear model [4,5].
The limit cycle solutions bifurcating from the Hopf bifurcation points can be found by using

AUTO [7], a numerical software package which can perform bifurcation analysis and
continuation of solutions for ordinary differential equations. The representative bifurcation
diagram obtained by using AUTO to Eq. (13) is presented in Fig. 8, where it is shown the limit
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Fig. 5. Saddle-node bifurcation set in s–F0 plane; a1 ¼ 3:0; a2 ¼ b1 ¼ b2 ¼ 1:0; C ¼ 2:0; g ¼ 0:0:
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cycle solution branches are bifurcating from the steady state constant solution branches via super-
and sub-critical Hopf bifurcations. The solid and open circles represent stable and unstable limit
cycle solutions, respectively and the squares represent the Hopf bifurcation points. The solid and
dashed lines represent the stable and unstable steady state constant solutions, respectively.
In general, the saddle-node and Hopf bifurcation sets can be obtained numerically by using

AUTO, and the results have been found to be comparable numerically with those of the analytical
study or Eqs. (20) and (21). The representative Hopf bifurcation set is shown in Fig. 9 together
with the saddle-node bifurcation set. The bifurcation sets in Fig. 9 are the result of the analytical
stability study and it is shown that the saddle-node bifurcation set meets the Hopf bifurcation set
at point P; at which two Hopf bifurcation points and a saddle-node bifurcation point in the
corresponding bifurcation diagram coincide.
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Fig. 6. Bifurcation diagram (response RD vs. second frequency detuning parameter g) with the stability boundaries of
saddle-node (SB; thin solid line) and Hopf (HB; thin dashed line) bifurcations; a1 ¼ 3:0; a2 ¼ b1 ¼ b2 ¼ 1:0; C ¼ 2:0;
s ¼ 0:21; F0 ¼ 1:88:

Fig. 7. Saddle-node bifurcation set in s–g plane; a1 ¼ 3:0; a2 ¼ b1 ¼ b2 ¼ 1:0; C ¼ 2:0; F0 ¼ 1:88:
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4. Summary and conclusions

The response of the oscillator adopting a non-linear version of Burgers’ model as a hysteretic
damper is governed by the two coupled second order differential equations including the non-
linear constitutive equation. Applications of van der Pol transformation and the method of
averaging lead to the reduced four-dimensional amplitude and phase equations from which the
steady state constant and periodic responses can be obtained. The local bifurcation analysis of
the reduced equations gives the bifurcation sets for the saddle-node and Hopf bifurcations. The
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Fig. 8. Bifurcation diagram with periodic solution branches; a1 ¼ 3:0; a2 ¼ b1 ¼ b2 ¼ 1:0; C ¼ 2:0; g ¼ 2:50; F0 ¼ 1:88;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2x þ R2D

q
(result of numerical study).

Fig. 9. Hopf (HB; dashed line) and saddle-node (SB; solid line) bifurcation sets in s–g plane; a1 ¼ 3:0; a2 ¼ b1 ¼
b2 ¼ 1:0; C ¼ 2:0; F0 ¼ 1:88 (result of analytical study).
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responses for various levels of parameter values exhibit non-linear behaviors including jump, isolated
response branch and limit cycle motion of the reduced averaged system. The periodic solution
branches bifurcating from the Hopf bifurcation points have been found from the numerical study.
Recently, as mentioned above, some efforts [11–13] have been spent to study the non-linear

dynamics of a hysteretic two-degree-of-freedom system which is in one-to-three internal resonance.
The numerical multi-harmonic balance method has been used as a useful and practical tool to
obtain sub- and super-harmonic responses as well as primary resonant response. The perturbation
methods including the method of averaging used in this work are expected to be an effective tool to
perform bifurcation analysis of such a two-degree-of-freedom system provided a continuous and
smooth hysteretic load–unload cycle is incorporated. Although complicated analysis of higher-
dimensional system including constitutive equations is expected to be required, the analytical study
of the two-degree-of-freedom system remains as a valuable future work provided abundant
amount of algebra to reduce it to the averaged system can be managed appropriately.
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